摘要
基于会话推荐的目标是根据给定的会话预测下一个交互项.针对现有基于会话推荐大多只关注某个用户交互项的连续项来捕获相关信息;以及利用知识图谱提供辅助信息的过程中忽略了多模态知识图中各种数据类型的问题.本文提出多模态知识图的用户微行为的会话模型,将用户微行为和多模态知识纳入基于会话推荐的多任务学习中,用户微行为对项目的建模在微观行为级别上,使用一系列项目操作对来充分捕获会话中的用户意图.提出多模态知识图注意力网络,通过使用多模态图注意机制进行信息传播,将得到的聚集嵌入表示进行推荐.考虑候选项目信息来平衡局部和全局表示的门控模块,门控模块利用多层感知器层对候选项目、最近交互项目和每个用户的全局偏好之间的关系进行建模来计算权重.在两个基准数据集的实验结果表明,本文所提模型优于最新基于会话的推荐,有利于提升推荐的准确率.
- 单位