基于支撑向量机和超像素的极化SAR图像分类

作者:韩景红; 王海江; 冉元波; 杨建华
来源:成都信息工程大学学报, 2018, 33(04): 370-374.
DOI:10.16836/j.cnki.jcuit.2018.04.004

摘要

针对极化SAR图像的分类方法多集中在像素级,这些方法不仅运算量大,而且分类效果较差,提出一种利用支撑向量机和超像素分割相结合的方法对极化合成孔径雷达(PolSAR)系统图像分类。首先,利用SLIC算法对Pauli分解后的极化SAR图像进行超像素分割。然后,利用预处理后的数据得到高维的极化特征空间,并利用监督局部线性嵌入(SLLE)算法对高维极化特征进行降维,减少特征空间的冗余信息,提取主要信息。最后,以超像素为处理单元,获得每个超像素内的特征,利用支撑向量机(SVM)对超像素块进行分类,获得初始类别分类结果,之后,使用Wishart分类器再次分类。实验结果表明所提的方法较基于像素点分类的方法能够得到更好的分类效果。

全文