摘要

研究了一个扩散系数与空间变量相关的一维空间-时间分数阶扩散方程的定解问题。基于Riemann-Liouville意义下空间导数和Caputo意义下时间导数的离散,提出了一种求解方程的隐式差分格式,验证了这个格式是无条件稳定,并证明了它的收敛性,其收敛的阶为O(τ+h),最后给出了数值例子。