摘要

为有效解决PT燃油系统进油油路堵塞、滤清器泄漏、喷油器油路堵塞等多种典型故障诊断问题,提出了基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的故障识别方法。首先计算油压信号的时域特征集,然后采用KPCA对原始多维初始特征向量进行特征提取,最后将经过KPCA提取的主特征向量输入经多种群遗传算法(MPGA)优化的LSSVM中实现故障类型的识别。实验结果表明,KPCA提取的主特征向量有效表达了原始故障的特征信息,相比于传统的BP神经网络和未经参数优选的LSSVM等分类模型,基于KPCA-LSSVM的故障识别方法速度更快、分类准确率更高。

  • 单位
    解放军理工大学野战工程学院; 天津大学