摘要

为使YOLOv2算法在保证检测速度的同时进一步提高目标检测的精确率,在YOLOv2模型的基础上提出RF-YOLOv2新模型。该模型先将KITTI数据集经过聚类,选出最适合KITTI数据集的候选框个数和候选框尺寸;其次在网络结构的训练部分采用残差块结构增加卷积层,提取更符合目标的特征描述;最后在网络结构的检测部分引入特征金字塔网络,将不同尺寸大小的特征图进行融合,使得低层特征图也具有丰富的语义信息。实验结果表明,RF-YOLOv2模型能获得更深层的特征、能融合更多尺寸的目标信息,改善了目标检测过程中由实际道路场景复杂、目标外形和结构多变等特点导致的检测率不高问题,在保证算法实时性的条件下,提高了对目标检测的精确率,RF-YOLOv2模型对大目标检测效果更佳。