摘要

针对典型自然场景智能观测的需求,为提高稀疏分类器在小样本数据库上的识别精度,提出一种可见光和近红外(NIR) HSV图像融合的场景类字典稀疏识别方法。首先,利用一直应用在计算机视觉显示领域中的图像HSV伪彩色处理技术将近红外图像与可见光图像融合;然后,对融合图像进行通用搜索树(Gi ST)特征和分层梯度方向直方图(PHOG)特征的提取与融合;最后,结合提出的类字典稀疏识别方法得到场景分类结果。所提方法在RGBNIR数据库上的实验识别精度达到了74. 75%。实验结果表明,融合近红外信息的场景图像的识别精度高于未融合时的识别精度,所提方法能够有效增加稀疏识别框架下场景目标的信息表征质量。