摘要
为了发挥模糊理论在不确定性预测中的优势并保留模糊时间序列(FTS)预测模型的可解释性,本文针对目前应用广泛的模糊C均值聚类(FCM)算法进行改进,提出了一种基于布谷鸟搜索的FCM (CS-FCM)算法.将CS-FCM算法用于模糊时间序列模型的非均匀论域划分与数据的模糊化处理,建立一种基于CS-FCM算法的模糊时间序列预测模型.该算法可实现聚类中心的全局寻优,降低传统FCM算法易陷入局部极小值带来的误差,提高模型预测精度.实证分析结果表明, CS-FCM算法的适应度优于FCM算法,本文模型的预测误差小于经典模糊时间序列预测模型,验证了新预测模型的有效性.
-
单位华北电力大学; 数理学院