摘要

燃烧优化的核心在于建立有效而快速的建模工具及寻优算法,以便于在线应用。为了研究新方法的适用性以及克服常用算法的缺点,本文利用支持向量回归建立了大型四角切圆燃烧电站锅炉NOx排放特性模型。利用大量的热态实炉试验NOx排放数据对模型进行了训练和验证。结果表明,支持向量回归模型能获得较神经网络模型更加准确的预测结果,相对于神经网络,支持向量回归能更好处理大样本量数据的非线性问题。随后,采用一种基于高斯概率密度(GPDD)的分布估计优化算法对NOx排放模型进行了寻优。研究发现,与遗传算法相比,GPDD具有更好的寻优能力与更快的收敛速度。结合支持向量回归与高斯概率密度分布(GPDD)算法能有效降低燃煤锅...

  • 单位
    浙江大学; 能源清洁利用国家重点实验室