摘要
遥感图像建筑物分割广泛应用于城市规划及军事领域,是当前遥感领域的研究热点。针对遥感图像中建筑物之间尺度变化较大、建筑物遮挡、建筑物阴影与建筑物边缘相似所导致建筑物分割精度较低的问题,提出一种并行路径和强注意力机制的卷积神经网络模型。该模型基于ResNet网络残差连接的思想,以ResNet为基础网络提高网络深度,并采用卷积下采样得到并行路径,提取建筑物的多尺度特征,以减少建筑物之间尺度变化的影响。然后加入强注意力机制,增强多尺度信息的融合效果,增加不同特征之间的区分度,抑制建筑物遮挡及建筑物阴影的影响。最后,在多尺度融合特征后加入金字塔空间池化模块,抑制分割结果中建筑物内部孔洞的出现,提高分割精度。在WHU以及Massachusetts Buildings公开数据集进行实验,分别从MIoU,Recall,Precision,F1-score 4个指标对分割结果进行量化比较,在Massachusetts Buildings数据集中MIoU达到72.84%,相较于ResUNet-a提升1.46%,能够有效提高遥感影像中建筑的分割精度。
-
单位中国科学院; 中国科学院大学; 中国科学院沈阳自动化研究所