基于随钻数据的岩性识别机器学习算法研究进展

作者:岳中文; 闫逸飞; 王煦; 岳小磊; 孙思晋; 李杨; 胡少银; 甘林堂
来源:科学技术与工程, 2023, 23(10): 4044-4057.

摘要

机器学习算法是岩性识别领域重点研究内容之一。与传统岩性识别方法相比,通过监测随钻参数变化进行岩性识别,具有高精度、多信息、集成化、智能化的优点。近年来,随着岩性识别技术不断发展,机器学习算法在岩性识别领域的研究和应用日益广泛。利用机器学习算法分析随钻数据,能够提高岩性识别结果的准确性,更高效地识别地层的岩性和构造。为了厘清岩性识别机器学习算法的发展现状,发掘其在岩性识别技术领域中的技术难题,综述了岩性识别机器学习算法的研究进展。首先,简要介绍了机器学习的概念与发展历程;其次,分类阐述能够用于岩性识别领域的机器学习算法;再次,总结了岩性识别领域各类常用机器学习算法的应用现状,比较了各类算法在岩性识别应用中的优缺点;最后,总结了岩性识别算法存在的问题和面临的挑战,并对其下一步发展方向提出了建议,使未来能更加准确高效地利用机器学习算法分析处理随钻数据,实现机器学习算法与岩性识别技术的深度结合。