摘要
针对细粒度图像分类任务中潜在的可区分特征太过细微难以捕捉、忽视不同特征间的关系等问题,提出一种随机选择全局多样化分类网络模型.首先,尝试以ConvNeXt作为主干来提升分类性能,并设计随机消除增强选择策略(REBS),通过特征消除分支和特征增强分支相互作用,促进网络学习更多相关信息,捕获潜在的可区分特征;然后,提出全局多样化模块(GDM),对不同层次的特征图进行交互建模,提高网络对比线索的能力;最后,建立内标压印数据集,将细粒度算法应用于真伪鉴定工作,实现细粒度图像分类任务在自然场景下的实际应用.所提出方法在CUB-200-2011、Stanford Cars和FGVC-Aircraft三个公开数据集上分别达到了91.9%、93.8%和93.5%的准确率,相比其他先进对比方法性能有较大幅度提升.在自建的内标压印数据集上达到了96.8%的准确率,能够实现真伪图像的准确分类.
- 单位