摘要
针对区域海洋特征环境快速观测的需求,提出了一种基于高斯过程回归的小型自主水下机器人(AUV)自适应采样方法.首先,通过比较高斯过程回归(GPR)中使用不同的回归推理方法的估计准确度和计算效率,确定AUV的合适采样间隔时间;在此基础上,根据AUV实时观测的数据进行GPR分析,预测未观测区域环境数据,并通过计算预测区域梯度极值和预测不确定度引导AUV进行在线路径规划;最后使用该方法,对具有不同特征分布的区域环境观测过程进行仿真.结果显示,本方法与常规方法相比,能够更高效地获得观测区域的低误差特征分布估计,更快地获得观测区域热点区特征,更好地适应观测区域特征分布不同的情况.
-
单位中国科学院大学; 中国科学院沈阳自动化研究所; 机器人学国家重点实验室