为了提高大数据环境下数据聚类的准确性,文中采用狼群优化算法实现数据聚类。对大数据集合进行狼群模拟训练,将数据结合中的多个数据采用狼群游走及围攻策略进行数据训练,不断更新数据在多维空间中的位置分布,根据数据所处位置与中心点的距离来判断数据所属类别,从而完成数据聚类。经过实验证明,相比于K-Means聚类算法和DBSCAN聚类算法,文中所提算法聚类优势明显。