摘要
目的在极化合成孔径雷达(synthetic aperture radar,SAR)图像中常用直线检测进行机场跑道的识别,但是河流、道路等与机场跑道具有相似直线的地物容易对检测结果造成干扰,出现检测目标难定位、目标模糊、多虚警等问题。为此,本文设计了一种利用目标散射特性结合局部二值模式(local binary patterns,LBP)特征分类的极化SAR图像机场跑道区域检测方法,采用LBP特征对极化SAR图像进行有监督的分类来提取真实的机场区域。方法首先利用异化散射功率对极化SAR图像进行阈值分割,然后通过形态学处理得到疑似机场跑道区域,同时构建机场跑道和非机场跑道两类训练样本,并提取、统计样本的LBP特征,形成直方图,得到特征向量训练支持向量机(support vector machine,SVM)二分类器,其中SVM二分类器采用了径向基函数(radial basis function,RBF)核函数;接着对疑似机场跑道区域构建LBP特征,送入SVM二分类器中分类,对机场跑道进行检测识别,最终得到真实的机场跑道区域。结果利用UAVSAR(uninhabited aerial vehicle synthetic aperture radar)系统采集的7幅极化SAR图像数据进行实验检测,并选取基于几何特征辨识跑道的两种算法进行对比,3种方法均有效检测出了7幅场景中的真实跑道,但是本文方法在7幅数据中总的虚警和漏警个数均为1,而两种对比算法中的虚警个数分别为2和11、漏警个数分别为8和1。结论本文方法不仅能有效检测出机场跑道区域,且检测效果更好,计算量较小,虚警和漏警率低,效率更高。
- 单位