摘要
本发明公开的一种基于深度学习的商品点击率预测方法,包括以下步骤:通过商品信息计算商品相似度,建立商品相似度函数;根据商品销售时间进行分类,对于缺失商品销售时间序列的商品,通过商品相似性函数进行近似值排序并选取排序最大的商品进行填充,得到多变量时间序列;将多变量时间序列输入时序模型,进行迭代得到特征时间序列;对商品用独热编码,得到商品词向量,将特征时间序列与商品词向量进行交互得到交互时间序列;分别计算特征时间序列损失值和交互时间序列损失值,得到商品的预测点击率,本发明通过填补得到完整销售时间序列并输入到时序网络,获得商品点击率预测;商品相似度函数计算得到近似商品,为用户提供优质的商品消费服务。
- 单位