摘要

知识与粒度相关,在不同粒度上对现象的解释不同,而因果性描述的是现象的本质特征。因果性与粒度之间存在着怎样的关联,一个粒度上的因果关系是否可移植到其他不同粒度上,是目前人工智能研究亟待解决的问题。针对由观测数据构成的信息系统,从数据中直接抽取因果变量所需满足的基本图形结构,估算变量间的因果关系;再通过向系统中添加新属性以及合并多个信息系统,改变原系统中信息的粒度,研究所识别的因果关系在新系统中的可迁移性。若新属性作用于结果变量,则原系统中的因果关系不可迁移至新系统;若新属性对结果变量无影响,则原系统中的因果关系可移植至新系统。