摘要

针对经典混合蛙跳优化算法寻优精度不高和易陷入局部收敛区域的缺点,本文提出一种基于进化策略自主选择的混洗蛙跳算法。算法中最差个体根据不同知识来源采取4种进化策略,每次迭代通过计算每种进化策略的立即价值、未来价值和综合奖励来决定最差个体的进化方式,并通过个体进化策略概率变异算法来提升寻优速度和避免陷入局部最优解。利用10个Benchmark函数对本文算法与8种进化算法进行性能比较。实验表明:所提的算法能较好地平衡全局探索能力和局部挖掘能力,可以用较少的迭代次数获取较优结果,具有很好的收敛速度和精度。