摘要

本发明公开了一种基于生成对抗网络模型的图像补全方法,属于深度学习神经网络领域,包括以下步骤:S1、构造原始生成对抗网络模型;S2、构造深度卷积神经网络作为生成器与判别器;S3、去除数据集图像中的部分像素,输入生成器中;S4、在生成器中运用卷积神经网络对图像进行补全;S5、将补全之后的图像与数据集图像输入判别器中判别,更新损失函数。本方法构建的基于图像补全的生成对抗网络模型,改变了生成器接收的信息,从噪声改成了去除部分像素的图像,通过生成器与判别器的对抗训练,使生成器能自动补全缺失的部分像素。