摘要

根据S700K转辙机动作功率曲线非线性、非平稳、能充分反映转辙机不同状态信息的特点,提出基于功率曲线时域特征和变分模态分解、排列熵和模糊聚类分析的S700K转辙机全周期状态诊断算法。获取典型功率曲线,计算其有效值、峰值因子和峭度因子作为时域特征值,用于描述功率曲线能量特征、冲击特性及概率密度;为弥补曲线类型中时域特征值差异不明显的特征表征,采用变分模态分解将功率曲线分解成具有不同频率特性的模态函数,计算不同模态函数的排列熵得到4个频域特征值;将时、频域共计7个特征值作为运行状态特征集,使用模糊聚类算法对特征集进行运行状态诊断,得到S700K转辙机的运行状态(正常、亚健康、故障和严重故障)。实例应用结果表明:对选取的60组曲线,本文算法诊断正确率为98.33%;故障库为30条曲线时,程序运行时间不超过1.3 s;采用该算法,无须对模型进行训练,便能准确有效地诊断S700K转辙机运行状态,适合S700K转辙机样本少的特点。