摘要
针对多种油液分析数据的特点,建立了航空发动机磨损故障融合诊断方法,实现基于油液分析数据的航空发动机磨损状态综合评估。该故障融合诊断方法包括磨损故障定性分析、定位分析和定因分析。定性分析以光谱、铁谱和颗粒计数原始分析数据为输入,基于( Dempster-Shafer)证据理论获得发动机磨损故障定性诊断结果;在定位分析部分,建立了基于深度学习的滚动轴承故障部位识别模型,以能谱分析原始数据作为模型输入,实现了航空发动机磨损部位的智能识别;最后,在定性分析部分,利用定性结果和定位结果,根据领域专家的经验,建立了基于if-then的知识规则,找出发动机磨损故障原因;利用实际油液监测数据对所提方法的有效性和可靠性进行验证,诊断精度最高可达到100%,结果充分表明了该方法的正确有效性。
-
单位南京航空航天大学; 中国航发商用航空发动机有限责任公司