摘要
为分析青藏铁路路基高程不规则变形问题,以青藏铁路唐古拉南—安多区间冻土路基沉降变形监控数据为依据,提出一种基于灰色BP神经网络的路基沉降预测模型,利用GM (1,1)模型拟合数据的残差进行BP神经网络训练,并通过训练后的残差序列得到新的路基沉降预测值。研究结果表明:建立隐含层为5层、训练次数为1 000次、训练精度为10-7的灰色BP神经网络模型,对青藏铁路冻土区沉降量进行预测,平均相对误差为1.201 555×10-6,精度较GM (1,1)模型更高,可有效预测路基沉降。基于灰色BP神经网络模型,分别预测3年后、10年后的路基沉降危险点,并提出相关路基养护措施建议。