一种基于支持向量机的车载网络异常检测方法

作者:龚子超; 伊晓瑞; 刘满山
来源:电脑与信息技术, 2020, 28(02): 8-10.
DOI:10.19414/j.cnki.1005-1228.2020.02.003

摘要

随着人工智能、5G、激光雷达和各类传感器等技术的不断发展与应用,无人驾驶、车联网等应运而生,汽车朝着智能化和网联化不断发展,为人们带来舒适、安全的驾驶体验。同时,网联化也打破了汽车现有的闭环状态,为车载电子系统带来了潜在的信息安全问题。为此,文章提出了基于支持向量机的车载网络入侵检测算法。通过对报文的DATA域的分析,挖掘报文的各字节特点,综合各字节和字节数据的信息熵,构成分类训练样本,训练支持向量模型,以此检测数据的可能异常。通过真实车辆数据实验分析,对模拟攻击的异常检测具有较高的检测率。