在油田开发过程中,预测石油单井日产量往往受多种不确定因素影响,本文基于具有时间记忆优势的LSTM神经网络模型,使用生产时间、冲程、冲次、日产液、含水率、泵效、日产气以及井口温度作为输入参数,建立单井日产量预测模型。并通过手动对预测模型参数(最大训练次数与全局学习率)进行调优,使得预测模型具有较高精度,通过实例预测,最终平均绝对误差0.100、均方差0.019以及平均绝对百分误差1.431%。该模型对于单井日产量具有广泛的通用性,并且具有一定的参考意义。