针对最大间距准则方法在特征提取中没有考虑原始样本的分布而执行硬分类标准的问题,提出了一种基于分类概率保持的最大间距准则人脸识别方法.首先,计算每个样本的分类概率,并且利用分类概率重新定义了样本的类内和类间散度矩阵;然后利用最大间距准则得到最优投影矩阵;最后将原始样本投影到低维特征空间,保持样本分布信息.在ORL、Yale及FERET人脸数据库上的实验表明,该方法在提高人脸识别率上是有效的.