摘要
结合多个模型集成学习可以提升单模型预测算法的性能,本文提出一种基于多特征融合的视频点击率预测方法,将哈希降维的特征和GBDT组合特征进行拼接作为输入特征,采用随机梯度下降法对逻辑回归、因子分解机和场感知因子分解机的输出值进行线性加权的迭代调整。实验结果表明该算法的预测效果优于基于单模型算法,也优于基于套袋方法的随机森林算法和基于平均法的其他集成算法,可以提高视频点击率预测精度。
- 单位
结合多个模型集成学习可以提升单模型预测算法的性能,本文提出一种基于多特征融合的视频点击率预测方法,将哈希降维的特征和GBDT组合特征进行拼接作为输入特征,采用随机梯度下降法对逻辑回归、因子分解机和场感知因子分解机的输出值进行线性加权的迭代调整。实验结果表明该算法的预测效果优于基于单模型算法,也优于基于套袋方法的随机森林算法和基于平均法的其他集成算法,可以提高视频点击率预测精度。