摘要

针对现有色环电阻识别方法中鲁棒性差、准确率低和运行速度慢等问题,在MobileNetV3网络的基础上提出了一种轻量级的色环电阻图像识别算法.首先在自建的色环电阻数据集上进行数据增强以增加样本数量,提高模型鲁棒性.然后在瓶颈结构中使用CBAM注意力模块,增加模型在空间和通道上对特征的细化能力以提高模型准确率.接着优化分类层,删掉冗余的升维操作,在提高准确率的同时减少参数量,提高模型运算速度.最后分别针对特征图大小和通道数不相等时添加跳跃连接,提高模型在深层网络中的特征提取能力,进一步提高模型准确率.实验结果表明,该模型在自建数据集上的识别准确率达到了98%,可快速准确的对色环电阻进行识别.该模型能够为电阻自动化识别提供新的技术参考.