摘要
针对工业机器人点到点轨迹规划问题,提出一种基于PSO-SA的时间最优机器人关节空间轨迹规划方法。使用模拟退火算法(SA)对粒子群算法(PSO)进行优化,将模拟退火机制引入到粒子群算法以提高算法的全局搜索能力。使用惯性权重非线性递减策略以及动态学习因子来平衡算法的全局与局部搜索能力。以PUMA_560机器人作为研究对象,通过5-7-5多项式插补函数得到各关节的轨迹曲线。通过PSO-SA优化关节运动时间,并加入关节的速度和加速度约束。对前三个关节进行实验仿真,结果表明PSO-SA比传统的PSO能得到更短的轨迹时间,算法也有更好的稳定性,提高了机器人的运动效率。
- 单位