摘要

通常,核相关滤波(KCF)算法易受遮挡等实际检测情况的影响。为使跟踪结果更为准确,提出了结合改进角点检测的优化核相关滤波方法。由自适应Harris角点数量适宜且鲁棒性强的特点,解决了广义霍夫算法提取冗余边缘点速度慢,以及因光照变化导致的边缘点提取不完整的问题。同时,自适应阈值法的引入将噪声对角点提取的影响降为最低。将目标分块并对每一目标子块单独跟踪,由子块间相对位置解决KCF算法在尺度发生变化时目标易丢失的问题。此外,对学习率参数进行了自适应更新,降低了KCF算法的学习率,减少了在目标被遮挡时的模型更新误差。结合交并比与匈牙利算法关联多个目标,逐一取出对应坐标并由广义霍夫算法描绘的目标轮廓得出最终位置,抑制了目标快速运动时KCF算法的漂移现象。实验表明,所提方法有效提高了目标跟踪的可靠性。

  • 单位
    辽宁工业大学