摘要

为了解决滚动轴承一维振动信号中故障特征微弱难以提取和深度学习模型层数加深容易导致梯度消失或梯度爆炸从而引起模型恶化、导致故障诊断准确率低和鲁棒性差的问题,本文提出一种基于EMD-GAF和改进的SERE-DenseNet的滚动轴承故障诊断方法。将滚动轴承一维振动信号通过滚动采样后利用EMD对其进行分解并重构,再使用GAF将重构的一维信号转换为二维图像作为模型输入,模型方面选取DenseNet121为主干,引入了SERE模块,并将2层卷积的Dense Layer改进为3层稀疏的、基数为8的模块;将二维图像作为输入通过该模型进行特征提取和故障分类。采用凯斯西储大学的轴承数据集进行仿真实验,实验结果表明,本文方法能够准确地完成滚动轴承故障诊断,故障诊断最大准确率100%,10次实验平均准确率99.91%,与常见的深度学习模型进行比较,本文方法具有较大的优越性;在信噪比为10 dB的环境下故障诊断准确率为96.48%,本文方法具有较强的鲁棒性。

全文