摘要

随着电动汽车并网容量的不断增加,面向电动汽车充电负荷准确地开展功率预测对于并网电力系统的经济调度和优化运行意义重大。基于计算机交叉学科的深度学习领域算法不断进步,为准确构建电动汽车充电负荷模型提供高效工具。该文研究一种基于LSTM(long short-term memory)神经网络的复合变量电动汽车充电负荷预测方法,将电动汽车充电负荷历史数据进行预处理,采用LSTM网络对降维后的时间序列进行动态建模,完成电动汽车充电负荷预测。采用实际数据进行验证,结果证明所提方法的有效性。