摘要
基于核范数矩阵回归的方法能够有效解决人脸识别中连续遮挡的问题,然而该类方法仅关注误差图像的低秩结构信息,忽略了样本图像表示的相关性。为了有效解决自然场景下的遮挡人脸识别问题,考虑到这一特点,提出一种联合松弛块对角表示的矩阵回归模型(RBDMR)学习图像的松弛块对角表示,并通过动态优化表示矩阵的块对角分量加强类内表示的相关性和类间表示的差异性。此外,通过联合优化训练样本和测试样本的表示持续提高类内表示的一致性。通过在三个不同的数据集进行验证,实验结果表明,该方法优于其他对比算法,在真实遮挡和光照变化的情况下有较好的性能。