摘要
为了研究不动点集为Dold流形的对合的等变协边分类,针对一个特定的Dold流形F=P(2,15),确定了以F为不动点集的所有带对合的流形(M,T)的等变协边分类。首先,给出了P(2,15)上切丛和法丛的Stiefel-Whitney示性类。其次,根据Kosniowski-Stong定理,构造合适的对称多项式函数,出现矛盾,证明假设错误,对合不存在;或者证明对任意对称多项式函数都满足Kosniowski-Stong定理,说明对合的存在性。最后,得到以P(2,15)为不动点集的对合(M,T)协边。结果表明,存在以F=P(2,15)不动点集的对合,且能够确定对合的等变协边分类。研究结果推广了不动点集为F=P(2,n)(n=1,3,5)的对合的研究结论,丰富了不动点集为Dold流形的对合的等变协边分类问题,也为研究不动点集其他特殊流形的对合提供了借鉴和参考。
- 单位