摘要

针对绝缘子自爆故障人工检测效率低,成本高的问题,基于改进U-net和卷积神经网络(CNN)模型,提出一种可有效识别绝缘子自爆故障的双阶段目标检测算法。首先,在语义分割阶段使用改进U-net模型,通过翻倍提高图像分辨率的方法有效提高图像分割精度。其次,在图像分类阶段提出更适合所提问题且有效提高分类准确度的新型CNN模型。最后,使用无人机拍摄的绝缘子图片为实验数据进行实验。实验结果表明所提算法识别精度较高。