摘要

温室湿度精准预测对病害防治策略制定、水肥自动灌溉等具有重要意义。本文研究了一种基于多模态数据驱动的预测方法。为解耦温室环境控制中环境变量复杂关系,提高模型预测效率,利用LASSO回归从多温室环境参数中筛选得到温室空气湿度变化强关联环境因子,结合CNN提取图像空间特征的优势,基于GAF理论将温室时间序列分别转化为GASF与GADF二维图像,进一步增强有效信息,抑制环境噪声,通过引入低复杂度的双卷积层充分提取图像潜在特征,识别湿度变化趋势,对不同湿度变化趋势的时间序列逐一构建Bayesian_LSTM预测模型,增加平稳输入提高预测精度。针对黄瓜温室,将室内温度、湿度、光照强度历史时间序列转化为二维图像作为输入,分析验证了模型的预测性能。试验数据显示当时间滑动窗口大小为15,选用GADF转化图像,Bayesian_LSTM隐藏节点数为100时,平均绝对误差、平均绝对百分比误差、均方根误差分别达到2.58%、4.56%、4.80%,为模型性能最优。对比RNN、GRU、Bi-GRU、1D-CNN共4种主流预测模型,试验结果均表现出良好的预测性能。

全文