摘要

针对稀疏字典的高冗余性和脉冲耦合神经网络(PCNN)参数设置的主观性问题,提出一种结合自适应稀疏表示(ASR)和参数自适应脉冲耦合神经网络(PAPCNN)的非下采样轮廓波变换(NSCT)域遥感影像融合方法。该方法将多光谱影像通过YUV空间变换得到的亮度分量Y与全色影像进行NSCT分解为高低频子带。对低频子带采用基于ASR的融合规则,根据影像块的梯度信息实现自适应稀疏表示。对高频子带采用PAPCNN模型,以选择PCNN的最优参数,再经过相应逆变换得到融合结果。实验结果表明:该方法对不同卫星影像在定性和定量评价上的总体效果均优于其他8种方法。