摘要
为了解决无线传感器网络节点分布不均,导致有效网络覆盖率较低的问题,提出一种融合莱维飞行与混合变异的蝠鲼觅食优化传感器节点覆盖策略M-MRFO。首先,在蝠鲼种群初始化生成方面引入广义对立学习机制,提高种群在搜索空间内的多样性和算法遍历性;其次,结合莱维(Levy)飞行机制对算法的权重因子和翻滚因子进行调整,通过Levy飞行的随机跳跃式搜索提高种群的全局寻优能力;最后,提出针对精英个体的高斯分布和柯西分布混合变异方法,使算法具备跳离局部最优的能力。将改进算法应用于传感器节点的网络覆盖优化中,利用蝠鲼种群启发式觅食行为模式对节点部署位置迭代寻优。实验结果表明,与标准蝠鲼觅食优化算法MRFO、改进差分进化算法IDEA和混合改进蚁狮算法MS-ALO相比,改进算法M-MRFO能够有效降低节点冗余,更均匀地实现节点部署,提高网络覆盖率。
-
单位浙江大学医学院附属第二医院