基于广义正交匹配追踪,提出了一种在压缩感知框架下,适用于任意块稀疏信号重构的算法。该算法以贪婪迭代为核心,在迭代过程中利用一种新的方法寻找非零块,达到了非零块估计方法优化的目的,提升了算法重构概率。理论分析表明在恰当的受限等距特性常数约束下,该算法能够保证重构原始信号。仿真实验从稀疏度、算法估计步长、测量值数目、迭代次数等方面证明了该算法的有效性与优越性。