摘要
科学合理的交易型开放式指数基金(ETF)期权定价有利于充分发挥其风险对冲功能,也是一个需要准确掌握市场规律并兼顾经济学意义的复杂建模过程。本文提出了一种新的混合建模方法,将嵌套长短时记忆神经网络模型(NLSTM)与Heston模型结合,实现ETF期权定价偏差的动态修正,并基于华夏上证50ETF、嘉实沪深300ETF和华泰柏瑞沪深300ETF的高频期权数据,实验验证了所提方法的有效性。研究结果表明,不同类型ETF期权价格的波动特征差异显著,无论是基于BS定价模型还是Heston定价模型都难以准确刻画ETF期权价格的复杂变化规律。通过将NLSTM神经网络模型与Heston模型结合,能够有效地捕捉不...
- 单位