摘要
针对目前温室环境系统中,环境监测数据只能反映当前环境状况,无法预测温室环境变化趋势,导致温室环境控制效果差的问题,提出一种基于Elman神经网络的温室环境因子预测方法。以采集的温室内温度、湿度以及二氧化碳浓度的历史数据作为预测模型的输入,建立Elman神经网络预测模型,进而实现精确的温室环境因子变化预测。结果表明,Elman模型优于BP和RBF模型,温度、湿度和二氧化碳浓度预测结果的均方误差分别为0.003 9、0.005 9和0.028 3,决定系数分别为0.991 5、0.967 8和0.973 9。该模型预测结果较理想,可以为温室环境调控提供一定的决策支持。
- 单位