摘要
产蛋率是评价蛋鸡产蛋性能的重要指标之一,因其具有时序性和非线性等特点,且其影响变量众多、存在复杂的耦合关系,难以实现精准预测。由于传统神经网络预测过程的非记忆性难以处理时序性问题,该文章提出蛋鸡产蛋率的LSTM-Kalman预测方法,使用主成分分析提取影响蛋鸡产蛋率的关键变量,通过LSTM神经网络预测蛋鸡产蛋率,采用Kalman滤波对LSTM预测的结果进行动态调整,作为最终预测结果。数据分析结果表明:LSTM-Kalman模型预测产蛋率的平均绝对误差、均方误差和皮尔逊相关系数分别为0.312 8、0.435 3和0.975 2,明显优于传统的BP神经网络、极限学习机等预测方法;通过2栋鸡舍生产数据的交叉测试验证,模型的预测准确率达到97.14%和98.71%,表明模型具有较强的泛化能力,能够满足蛋鸡产蛋率预测的实际需要,可以为蛋鸡养殖环境数据的精准调控提供参考。
- 单位