摘要

基于2018—2020年合肥、芜湖和马鞍山3个城市国控站点的PM2.5逐日监测数据和同期地面气象观测资料,利用Kolmogorov-Zurbenko(KZ)滤波对PM2.5日浓度的原始时间序列进行分解,获取短期分量、季节分量和长期分量,并进行多元线性逐步回归构建各分量与气象因子的模型,最后依据短期分量和基线分量的回归模型和残差分析,对序列进行重建,获取消除气象条件影响的PM2.5长期分量。KZ滤波分析结果表明:2018—2020年气象条件对江淮区域PM2.5污染改善影响存在波动,在2018—2019年为负贡献,而在2020年秋冬季则变为正贡献;江淮地区3个城市2018年和2020年PM2.5修正后的长期分量均值表明气象条件对各市PM2.5改善影响存在差异较大,气象条件对合肥PM2.5改善的贡献仅为1.0%,芜湖为7.8%,马鞍山为21.0%;NAQPMS数值模式情景分析结果显示,减排措施对江淮之间PM2.5浓度改善贡献率范围为42.5%~104.8%。综合研究表明,减排措施是2020年江淮之间PM2.5浓度改善的主要因素。

全文