摘要

针对苹果采收成熟度不一,导致果品贮藏品质不佳、病害率高等问题,基于可见/近红外光谱和成熟度评价指数建立快速无损判别采收成熟度的分类模型。根据盛花期后的发育时间,采集了3种成熟阶段(八成熟、九成熟和十成熟)样品的光谱信息。光谱预处理后通过"二审"回收算子法剔除异常样本,随机蛙跳(RF)算法提取特征变量,建立成熟度评价指数SIQI和综合评价指标FQI的偏最小二乘(PLSR)模型,SIQI指数和FQI指数的预测相关系数R为0. 938和0. 917。建立极限学习机(ELM)和支持向量回归(SVR)分类模型,并与2种成熟度评价指数结合SVR建立的分类结果进行比较。对比4种分类结果发现,基于SIQI+SVR构建的分类结果最好,优于直接分类模型,分类准确率为85. 71%。试验结果表明,可见/近红外光谱结合成熟度评价指数可实现苹果成熟度分类,为后续采收成熟度的无损检测设备研发提供理论参考。