现有的多分类孪生支持向量机主要考虑支持向量机的经验风险最小化原则,而忽略了结构化风险。针对该问题,通过引入正则项式,实现算法的结构风险最小化原则,并结合多对一的组合策略和最小二乘法,提出一种改进的最小二乘多分类孪生支持向量机。在UCI数据集上的实验研究表明,该算法相对于传统的多分类支持向量机在分类性能上有明显提高。