摘要

在GLNet(Global-Local Network)中,全局分支采用ResNet(Residual Network)作为主干网络,其侧边输出的特征图分辨率较低,而且表征能力不足,局部分支融合全局分支中未充分学习的特征图,造成分割准确率欠佳。针对上述问题,提出了一种基于GLNet和HRNet(High-Resolution Network)的改进网络用于高分辨率遥感影像语义分割。首先,利用HRNet取代全局分支中原有的ResNet主干,获取表征能力更强,分辨率更高的特征图。然后,采用多级损失函数对网络进行优化,使输出结果与人工标记更为相似。最后,独立训练局部分支,以消除全局分支中特征图所带来的混淆。在高分辨率遥感影像数据集上,对所提出的改进网络进行训练和测试,实验结果表明,改进网络在全局分支和局部分支上的平均绝对误差(Mean Absolute Error,MAE)分别为0.0630和0.0479,在分割准确率和平均绝对误差方面均优于GLNet。