摘要
为提高烟丝杂质检测及剔除的准确率,设计了一种基于计算机视觉与机器学习的烟丝杂质图像级联检测方法。该方法采用颜色特征和梯度能量计算机视觉方法对烟丝杂质进行定位,结合HOG特征、LBP特征与级联Adaboost分类器,设计多窗口检测算法对烟丝杂质进行实时检测。结果表明:基于颜色特征的静态杂质检测方法的准确率高于梯度能量方法,在结合了HOG特征和级联Adaboost分类器算法后,检测结果非常稳定,烟丝杂质检测准确率达到97.33%,在实际操作过程中不需要人工调整算法参数,在保证算法准确率和有效性的同时降低了时间成本。
-
单位河南中烟工业有限责任公司