摘要
恶意软件是互联网最严重的威胁之一。现存的恶意软件数据庞大,特征多样。卷积神经网络具有自主学习的特点,可以用来解决恶意软件特征提取复杂、特征选择困难的问题。但卷积神经网络连续增加网络层数会引起梯度消失,导致网络性能退化、分类准确率较低。针对此问题,提出了一种适用于恶意软件图像检测的Attention-DenseNet-BC模型。首先结合DenseNet-BC网络和注意力机制(attention mechanism)构建了Attention-DenseNet-BC模型,然后将恶意软件图像作为模型的输入,通过对模型进行训练和测试得到检测结果。实验结果表明,相比其他深度学习模型,Attention-DenseNet-BC模型可以取得更好的分类结果。在Malimg公开数据集上该模型取得了较高的分类精确率。
-
单位空军工程大学防空反导学院