摘要

为实现枪弹痕迹自动匹配的准确性,提出了将基于深度学习的SuperPoint特征提取和SuperGlue匹配算法引入枪弹痕迹自动识别研究。通过SuperPoint网络提取弹痕图像特征点位置与描述子向量;研究了SuperGlue的匹配机制,包括注意力机制的图神经网络(GNN)及优化匹配层,将提取的弹底窝痕迹的特征点和描述子使用SuperGlue算法进行匹配。实验表明SuperPoint特征通过SuperGlue匹配,相较于机器学习算法实现了更高的匹配准确度,正确匹配数量提高,为枪支鉴定增加科学性。

全文