摘要
针对风电功率预测(WPF)问题,提出一种基于离散小波变换(DWT)、时间卷积网络(TCN)和长短期记忆(LSTM)神经网络的混合深度学习模型(DWT-TCN-LSTM),对超短期风电功率进行预测.将DWT-TCN-LSTM模型分别与差分整合移动平均自回归(ARIMA)模型,支持向量回归(SVR)模型,长短期记忆神经网络模型和卷积长短期记忆(TCN-LSTM)混合模型进行对比实验,通过对称平均绝对百分比误差(SMAPE),均方根误差(RMSE)和平均绝对误差(MAE)3种评价指标值对各个模型进行评价.实验结果表明:DWT-TCN-LSTM模型具有较好的预测性能.
- 单位