摘要
为改进当前人体摔倒检测方法场景适应能力弱、易误检等不足,提出了一种基于人体骨骼关键点和GCN结合的人体摔倒检测模型。在CrownHuman、COCO2017、Le2i等数据集上进行对比试验,试验结果表明优化后的YOLOX人体目标检测算法的平均准确率达到了50.66%,较YOLOv3、YOLOv5提高了9.83%和3.97%。人体姿态估计算法的平均准确率达到了71.6%,优于OpenPose、Mask-RCNN等方法。基于图卷积的人体摔倒检测算法准确率达到92.2%,高于YOLOv5-S+pose等方法。一系列的试验结果表明,所提出的摔倒检测方法具有较高的检测精度。
- 单位