摘要

为了提高融合图像的视觉感知效果,提出一种非下采样剪切波变换(Non-Subsampled Shear Transform,NSST)域红外和可见光图像感知融合方法。首先采用NSST将源图像分解为高频和低频分量;接着采用参数自适应脉冲耦合神经网络(Parameter Adaptive Pulse Coupled Neural Network,PA-PCNN)融合高频分量图像,提高成像细节;然后联合使用高斯滤波器和双边滤波器进行多尺度变换以融合低频分量图像,将低频分量分解为多尺度纹理细节和边缘特征以捕获更多的多尺度红外光谱特征;最后利用NSST逆变换获取融合图像。实验结果表明,该方法不仅可以有效提高融合图像的细节信息,而且还能增强红外特征的提取能力以契合人体的视觉感知。